ПРОМЫШЛЕННОЕ ОБОРУДОВАНИЕ

Регуляторы гидронасосов с переменным рабочим объемом


В силовых гидроприводах при регулировании потока рабочей жидкости потери мощности становятся актуальной задачей. Дроссельное регулирование генерирует большое количество тепла, которое тратится впустую. При этом дизельное топливо в строительной спецтехнике и потребляемая электроэнергия стационарного оборудования расходуются весьма неэффективно.

Гидронасосы с переменным рабочим объемом позволяют изменять расход рабочей жидкости, затрачивая на это незначительную мощность. При длительных технологических операциях, когда изменение скоростей исполнительных механизмов машин требуется выполнять нечасто, оператор в состоянии отслеживать ход выполнения работ и управлять производительностью насоса.

Но динамичная работа машины требует очень быстрого регулирования расхода рабочей жидкости или поддержки его постоянного значения в условиях скачкообразного изменения давления. Оператору также трудно управлять гидравлическим насосом при выполнении точных работ.

В качестве примеров можно привести работу экскаватора, движение бульдозера или погрузчика в условиях строительной площадки, а также крана при монтаже тяжелых строительных конструкций.

Ограниченную физиологическую реакцию человека заменяет автоматика. Механическое управление насосами с переменным рабочим объемом выполняют различные регуляторы. Зарубежные специалисты часто называют эти устройства компенсаторами.

При изменении внешней нагрузки в зависимости от требуемых функций регуляторы (компенсаторы) обеспечивают постоянную мощность, потребляемую насосом от первичного двигателя, выработку им постоянного расхода или поддержание постоянного давления. Регуляторы выполняют и более сложные
функции, оптимизируя работу гидропривода машины.

Регуляторы устанавливаются на насосы для открытых и закрытых гидросхем, управляют наклонной шайбой или наклонным блоком цилиндров аксиально-поршневых гидромашин. Конструкции их несколько различаются, но принцип работ одинаков.

Регуляторы используются на аксиально-поршневых гидронасосах с широкой линейкой рабочих объемов от 10 см3 и более с давлением до 35,0 МПа (350 бар). Регуляторы монтируются непосредственно на корпусе насоса.

Очень часто используются типовые регуляторы на аксиально-поршневых насосах с наклонной шайбой и наклонным блоком цилиндров, а также на гидронасосах с наклонной шайбой, оснащенный регулятором потока. Этот тип насоса предназначен для открытых гидросхем.

Он широко используется в различных гидравлических машинах и оборудовании и является одним из самых распространенных на мировом рынке машиностроительной гидравлики. Его максимальное рабочее давление обычно составляет 28,0 МПа, а пиковое давление – 35,0 МПа.



Рис. 1. Конструктивная схема регулятора потока

Регулятор потока обеспечивает постоянный расход рабочей жидкости при изменении давления нагрузки. Типовой регулятор монтируется на корпусе аксиально-поршневого насоса и управляет двумя пилотными потоками. На рис. 1 показана принципиальная конструкция такого регулятора потока, а его гидравлическая схема приведена на рис. 2.

Регулятор потока состоит из двух дросселирующих золотников (пропорциональных клапанов 3/2), установленных в корпусе. С одного торца каждый золотник поджат пружиной. Пружина пилотного (верхнего на рис. 1) золотника имеет небольшую жесткость, а пружина золотника ограничения максимального давления (нижнего на рис. 1) – силовая.



Рис. 2. Гидравлическая схема регулятора

Пружинная полость пилотного золотника (левая на рис. 1) соединена с противоположной (правой на рис. 1) через дроссель, выполненный внутри его шейки. Пружинная полость золотника ограничения давления соединена со сливом.

Противоположные торцевые полости золотников (правые на рис.1) связаны с линией нагнетания аксиально-поршневого насоса. В корпусе регулятора выполнены стабилизирующие дроссели. Рабочая жидкость из регулятора поступает в управляющий плунжер насоса, который перемещает наклонную шайбу (рис. 2).

Противоположный возвратный подпружиненный плунжер всегда стремится вернуть наклонную шайбу в исходное положение, соответствующее максимальному рабочему объему насоса. Жесткость пружины пилотного золотника регулятора очень маленькая.

Но чтобы сдвинуть этот золотник, помимо небольшого сопротивления пружины необходимо преодолеть гидравлическую силу, действующую на его торец. Эта сила зависит от величины давления в пружинной полости, которое меньше, чем в противоположной. Его значение определяется величиной перепада давления на дросселе внутри шейки золотника.

Пилотный клапан с учетом действия на его золотник слабой пружины и разницы давления настраивается на 1,0-3,0 МПа, в зависимости от условий применения аксиально-поршневого насоса. Пружина золотника ограничения давления силовая и настроена на 25,0-28,0 МПа. Рассмотрим работу регулятора потока, у которого пилотный клапан настроен на давление 2,0 МПа.

Гидронасос при пуске вырабатывает максимальный расход. Рост давления в гидросистеме перемещает дросселирующий пилотный золотник влево, и рабочая жидкость, поступая в управляющий плунжер, отклоняет шайбу, уменьшая рабочий объем насоса, снижая его расход.

При достижении величины давления 2,0 МПа пилотный золотник полностью открывает свои рабочие окна. Рабочая жидкость отклоняет шайбу в положение, соответствующее установленной величине расхода насоса. Расход резко падает. В этот момент в насосе возникает гидроудар.

На рис. 3 показана схема регулятора, позволяющая плавно осуществлять пуск гидронасоса. В этом устройстве при отключенном электромагнитном клапане Y1 давления в торцевых камерах верхнего золотника р1 и р3 равны, поэтому при его росте до величины настройки клапана ограничения давления пружина пилотного золотника удерживает его от перемещения влево.



Рис. 3. Схема управления регулятором

При включении электромагнитного клапана Y1 подпружиненная полость пилотного золотника регулятора изолируется от линии нагнетания аксиально-поршневого гидронасоса. Перемещение пилотного золотника в левую сторону сдерживает только слабая пружина. Он вытесняет рабочую жидкость из подпружиненной торцевой полости через дроссель на слив.

Такое демпфирование позволяет очень быстро, но равномерно, без колебаний, перемещаться пилотному золотнику. Он сразу же открывает доступ рабочей жидкости в управляющий плунжер, который мгновенно перемещает наклонную шайбу в положение, соответствующее выбранной величине расхода. Таким образом, обеспечивается плавный пуск насоса, без гидравлических ударов.

Рассмотрим принцип двухступенчатого управления регулятором потока. На рис. 4 показана схема такого регулятора. При выключенных электромагнитных клапанах Y1, Y2, Y3 на пилотный золотник действует управляющее давление величиной не выше 2,0 МПа, т.е. регулятор работает по вышеописанному принципу.



Рис. 4. Схема регулятора с двухступенчатым управлением

Первая ступень управления регулятором осуществляется следующим образом. При вращении аксиально-поршневого насоса включается электромагнитный клапан Y1. Пропорциональный электрический сигнал Y2, управляющий предохранительным клапаном, увеличивается до максимума, ограничивая пилотное давление значением 25,0 МПа.

Управляющий поток от насоса проходит через внутренние отверстия пилотного золотника в его правую торцевую полость и одновременно через дроссель в левую подпружиненную. Из нее по внутренним каналам управляющий поток через предохранительный клапан под давлением 25,0 МПа направляется на слив. В правой торцевой полости пилотного золотника давление больше, чем в левой (за счет потери на дросселе), поэтому он смещается влево.

Проходное сечение уменьшается, перепад давления на кромках пилотного золотника увеличивается, в управляющем плунжере давление становится меньше, и возвратный плунжер отклоняет шайбу в положение уменьшения рабочего объема, соответствующее небольшому расходу. Аксиально-поршневой насос работает при давлении 25,0 МПа, но при малом расходе.

Включение электромагнитного клапана Y3 приводит в действие вторую ступень управления регулятором. При таких условиях регулятор устанавливает наклонную шайбу в положение, соответствующее половине рабочего объема, т.е. насос вырабатывает половину потенциального расхода.

Когда включается электромагнит Y3, давление в правой торцевой камере пилотного золотника будет немного падать, позволяя ему перемещаться вправо, уменьшая перепад давления на дросселирующих кромках. В управляющем плунжере давление увеличится, и он отклонит шайбу, увеличив рабочий объем на величину, соответствующую половине производительности аксиально-поршневого гидронасоса.

Описанные регуляторы потока во многом используются в гидросистемах с практически постоянным давлением нагрузки. Но существует большое количество типов машин и оборудования, в гидросистемах которых давление нагрузки всегда меняется в широком диапазоне. В таких случаях используются регуляторы, чувствительные к изменениям нагрузки.

Они эффективно сохраняют мощность машин, особенно при минимальных значениях давлений нагрузки. Такие регуляторы не являются слишком сложными и работают по известным принципам. Мы знаем, что величина потока, проходящего через дроссель, определяется перепадом давления (Δр = р1 – р2).

Разность давления между р1 и р2 преобразовывается в расход рабочей жидкости, который, воздействуя на регулятор, будет изменять скорость гидродвигателя. Поэтому регулятор должен поддерживать перепад давления постоянным независимо от изменения давления нагрузки.

Тогда и расход, поступающий в гидродвигатель, сохранится постоянным. Обратимся к схеме регулятора на рис. 5, на котором ясно видны изменения. Здесь подпружиненная полость пилотного золотника через Х-порт регулятора соединена с линией нагнетания, снабжающей рабочей жидкостью гидродвигатель (на схеме – гидромотор).



Рис. 5. Регулятор с LS системой управления

Отметим, что на приведенной схеме показан сам принцип соединения канала LS с регулятором. Сигнал LS, получаемый регулятором, может подаваться из различных точек гидросистемы в зависимости от особенностей конструкции машины.

В исходном положении насос будет разгружен. При подаче электросигнала Y2 на пропорциональный клапан рабочий поток от гидронасоса направится в гидродвигатель. Давление р2 будет интенсивно расти до величины, необходимой гидродвигателю. Одновременно растет давление в LS канале и,следовательно, в пружинной полости пилотного золотника.

Смещаясь вправо, он заставляет давление р1 повышаться. В результате на пропорциональном электроуправляемом клапане Y1 установится перепад давления (Δр = р1 – р2), равный величине настройки пилотного клапана регулятора, т.е. в нашем примере 2,0 МПа.

Вне зависимости от роста или падения давления в гидродвигателе перепад давления на клапане Y1сохранится постоянным, поэтому расход рабочей жидкости в гидродвигатель не будет изменяться. Но чтобы увеличить или уменьшить расход, т.е. скорость гидродвигателя, необходимо изменить величину перепада давления на пропорциональном клапане Y1.

Это достигается изменением величины электрического сигнала управления, подаваемого на пропорциональный электроуправляемый клапан Y1. Изменение площади проходного сечения клапана приводит к изменению величины перепада давления на нем (Δр), в результате изменяется расход (Q) в
гидродвигатель.



Рис. 6. Распределение мощности в насосе с LS регулятором

Рисунок 6 иллюстрирует распределение мощности в гидронасосе с LS регулятором. Графики показывают, что при управлении насоса LS регулятором экономится большое количество мощности.

Потери возникают только при перепаде давления на электроуправляемом пропорциональном клапане. Но они незначительны по сравнению с общей мощностью насоса. Помимо описанных существуют и другие типы регуляторов: давления, мощности и т.п., которые реализовывают различные характеристики управления насосами. Но принцип работы всех регуляторов идентичен.